Tetrahedron 65 (2009) 10377–10382

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00404020)

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

One step from nitro to oxime: a convenient preparation of unsaturated oximes by the reduction of the corresponding vinylnitro compounds

Kewei Wang^a, Xuhong Qian^{a,b,}*, Jingnan Cui^{a,}*

a State Key Laboratory of Fine Chemicals, Dalian University of Technology, PO Box 89, Zhongshan Road 158, Dalian 116012, China ^b Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, PO Box 544, 130 Meilong Road, Shanghai 200237, China

article info

Article history: Received 14 September 2009 Accepted 13 October 2009 Available online 15 October 2009

ABSTRACT

A series of novel unsaturated oximes were conveniently prepared from the corresponding vinylnitro compounds by reduction with SnCl₂ 2H₂O. The structures of the oximes were characterized by ¹H and ¹³C NMR, IR and HRMS, and X-ray crystallography analysis of 1-(6-chloro-pyridin-3-ylmethyl)-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime 2a reveals that, the hydroxyl group is arranged in a trans configuration. Some evidences from a brief investigation suggest that these oximes seem to be formed by reduction of the aci form of nitro aliphatic compounds.

- 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Oximes are of great interest as intermediates in organic synthesis, $1-6$ for example, oxime ether, as one of the important oxime derivatives, has long been recognized in the fields of agro-chemistry^{[7–11](#page-5-0)} and medicinal chemistry.^{12–14} Furthermore for their own biological activities, oximes are particularly significant as antimicrobial agents, 15 15 15 insecticides, 16 vasodilators, 17 inhibitors of P450 $17¹⁸$ $17¹⁸$ $17¹⁸$ and antioxidants.^{[19](#page-5-0)}

Oximes are commonly prepared by three methods. The first is the most known method by the condensation of carbonyl compounds with hydroxylamine, however sometimes this method is not applicable for the preparation of unsaturated oximes.[20](#page-5-0) The second is the often used method by N-oxides reaction with alkene, 2^{1-23} and the third method is a practical one by treatment of precursors nitroalkanes with alkali.^{[24](#page-5-0)} In addition, there are a few reports that oximes can be obtained directly from nitro benzylic compounds by electrochemical reduction but no selectivity with simultaneous formation of hydroxylamine,^{[25](#page-5-0)} or by homogeneous catalyzed reduction of saturated nitro aliphatic compounds with the cuprous CO complexes as the catalyst but under rigorous reaction conditions.[26](#page-5-0)

Recently in research of insecticide, we unexpectedly found that, reduction of cyclic vinylnitro compound CH-IMI(1a), a famous potential neonicotinoid pesticide, gave an unsaturated oxime, but not the corresponding hydroxylamine and/or amino compounds. The literature describing such structures, unsaturated oximes, is rather sparse and their preparation is of great difficulty.^{[27](#page-5-0)} Herein we wish to report the results regarding the preparation of unsaturated oxime from vinylnitro compounds by reduction with tin(II) chloride dihydrate $(SnCl_2 \cdot 2H_2O)$.

2. Results and discussion

Compound 1a was chosen as a model substrate in order to test the effectiveness of the reaction. In a typical experiment, placing 1a and an excess of $SnCl₂·2H₂O$ in dichloromethane resulted in the formation of the unsaturated oxime 2a with complete consumption of the substrate in 5 h at room temperature (Scheme 1). In optimization of the reaction, it was found that other solvents, such as acetonitrile, ethyl acetate, methanol, and ethanol, were not suitable because of their poor solubility to the substrate. The optimal

Scheme 1. Synthesis of unsaturated cyclic oximes 2a-s from vinylnitro compounds 1a–s.

Corresponding authors. Tel.: +86 411 39893872; fax: +86 411 83673488. E-mail addresses: xhqian@ecust.edu.cn (X. Qian), jncui@dlut.edu.cn (J. Cui).

^{0040-4020/\$ –} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.10.042

Table 1

^a Optimal conditions: the amount of $SnCl₂·2H₂O$ was 5.5 equiv of the substrate and dichloromethane as solvent.

amount of the reducing agent required for a satisfactory yield was proved to be 5.5 equiv with respect to the substrate.

In order to explore the scope of the reaction, a series of cyclic vinylnitro compounds 1b–s [\(Scheme 1\)](#page-0-0), which were synthesized by

the method described previously,^{[28](#page-5-0)} were reduced under the optimal conditions and the results summarized in Table 1. In each case the corresponding oximes were obtained. Although the conversion of vinylnitro compounds to the corresponding oximes was complete within 5 h according to the TLC analysis, the yields of the isolated products were moderate, due to the so good solubility of the oximes in water that it is difficult to be extracted with dichloromethane in the work-up procedure.

The structures of the unsaturated oximes 2 were characterized by IR, 1 H, and 13 C NMR, HRMS, and X-ray crystallography. The IR spectra of compounds showed $C=N$, N–O and O–H stretching bands at 1630–1640 cm⁻¹, 920–940 cm⁻¹ and 3420– 3440 cm⁻¹, respectively, and O-H deformation vibration at 1300 cm $^{-1}$. The ¹H NMR of spectra of unsaturated oximes 2 showed a singlet at 7.70–7.79 ppm, which attributed to CH in the $-CH = NOH$, compared to the singlet at 6.60–6.66 ppm, which attributed to CH in the $=$ CH–NO₂. Further, the structure of 2a was determined by X-ray single-crystal diffraction analysis (Fig. 1) showing a non-planar framework and the hydroxyl group arranged in a trans configuration.

Figure 1. X-ray single-crystal structure of 2a.

Motherwell et al. have ever reported that the oximes can be obtained by in situ tautomerization of the diazene dioxides dimers of the corresponding nitroso compounds (Scheme 2).^{[29](#page-5-0)} However Zuman and Shah think that the dimers are never formed in the reduction of nitro compounds, 30 due to the significant kinetic inhibition to the dimers formation or a higher rate of further re-duction under the experiment conditions.^{[31](#page-5-0)} It is presumed that the unsaturated oximes 2 could not be formed through tautomerization of the corresponding dimers.

Reduction of nitro group to amino group under acidic conditions is usually as follows ([Scheme 3](#page-2-0)): the nitro group is first reduced via two electrons to form the nitroso group, which accepts another two electrons to form hydroxylamine group and then converted to

Scheme 3. The general principle of nitro reduction to amino group.

amino group.[32](#page-5-0) Nitroso compound is a highly reactive intermediate in the reduction conditions, which cannot be isolated and it can be reduced to the corresponding hydroxylamine, or amine further by control of the reduction conditions. Generally there is an equilibrium between nitro form and aci form in nitroalkanes, and the aci is less stable than the *nitro*.^{[33](#page-5-0)} In our case, the *aci* could be more stable because of formation of the strong conjugative interaction between the two $C=N$ bonds. On the basis of the known reductive mechanism of nitro group and the above studies, two possible mechanisms path a and path b are proposed in the formation of oximes 2 (Scheme 4). In path a, the nitro-1 is reduced via two electrons to form the nitroso, which is an unstable intermediate, the fast nitroso to cis-2 prototropy may prevent the reduction of NO to NHOH, and then c is-**2** tautomerize to more stable *trans*-**2.** 34 34 34 In path b, the $nitro$ -1 could exist in *aci*-1 and the *aci*-1 is reduced via two electrons to form cis-2, which then tautomerize to trans-2.

reduction conditions. This indicated that NH in the cyclic and acyclic vinylnitro compounds 1 could make them form more stable aci-1, while O, S, and N of tertiary amine in 3, 4, and 5 could not lead to form stable aci form. The results imply that path b is more reasonable.

3. Conclusion

We have successfully synthesized a series of unsaturated oximes by reduction of the corresponding substituted vinylnitro compound using $SnCl₂·2H₂O$ under mild conditions. The procedure is remarkably simple, and unique chem-selective without catalyst in preparing such oximes, which are usually difficult to be prepared by traditional methods. This is another example of direct conversion of nitro compounds to oximes and the research extends the application scope of nitro reduction.

4. Experimental

4.1. General

Melting points were obtained with an X-6 micro-melting point apparatus and are uncorrected. The infrared (IR) spectra

Scheme 4. Proposed mechanism for formation of oximes 2.

In order to confirm which path more reasonable, a brief investigation into the scope of this reduction was performed. In controlled experiments, attempts to reduce the vinylnitro compounds 3, 4 and 5 (Fig. 2) gave neither the corresponding oximes nor the corresponding hydroxylamine or amine with no conversion of the vinylnitro compound, while reducing acyclic vinylnitro compound 1t (Fig. 2), a commercialized insecticide called nitenpyram, gave the corresponding oximes 2t under the same

Figure 2. Structure of 1t, 3, 4 and 5.

were recorded on a Nicolet 20DXB FR-IR spectrometer using potassium bromide pellets or films. The ¹H and ¹³C NMR spectra were obtained on a Varian INOVA 400 MHz NMR spectrometer with DMSO- d_6 as the solvent and TMS as the internal standard. High-resolution mass spectra (HRMS) were obtained on HPLC-Q-Tof MS (Mcrio) spectrometer. X-ray single-crystal diffraction experiments were carried out on a Bruker Smart APEXII diffractometer. Flash chromatography was performed on silica gel. All the solvents were analytic grade. All chemicals or reagents and nitenpyram (1t) were purchased from standard commercial suppliers.

4.2. General procedure for substituted 2-nitromethylidene substrates 1a–e, 1h–j, and 1m–q

Compounds 1a–e, 1h–j, and 1m–q were prepared according to the reported literature.^{[28](#page-5-0)} 2-Chloro-5-(chloromethyl) pyridine (1.62 g, 10 mmol) in acetonitrile (30 ml) was added dropwise to ethylenediamine (2.40 g, 40 mmol) in acetonitrile (20 ml) while stirring in an ice bath. After removing from the ice bath and stirring overnight at room temperature, the solvent was evaporated. Aqueous sodium hydroxide (1 M, 50 ml) was added to the residue, which was then extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and evaporated to afford N-(2-chloro-pyridinylmethyl)ethylenediamine (1.39 g, 75% yield). N-(2-Chloro-pyridinylmethyl) ethylenediamine (0.93 g, 5 mmol) in ethanol (20 ml) was added dropwise to 1,1-bis(methylthio)-2-nitroethylene (0.83 g, 5 mmol) in ethanol (10 ml). The mixture was refluxed for 4 h. After evaporating the solvent, the residue was recrystallized from ethanol to afford 1-N- (2-chloro-pyridinylmethyl)-2-nitromethylene-imidazolidine 1a (0.95 g, 75% yield). Compounds $1b-e$, $1h-j$, and $1m-q$ were similarly prepared.

4.3. General procedure for substituted 2-nitromethylidene substrates 1f–g, 1k–l, and 1r–s

Compounds 1f–g, 1k–l, and 1r–s were prepared according to the report[.35](#page-5-0) A solution of ethylenediamine (2.4 g, 40 mmol) in methanol (20 ml) was stirred at 0° C during the dropwise addition of 2-furaldehyde (0.96 g, 10 mmol). After the addition was completed, the solution was stirred and maintained at 0° C while NaBH₄ (0.57 g, 15 mmol) was added cautiously in small portions. The reaction mixture was allowed to warm to ambient temperature and stirred for 2 h. The resulting cloudy solution was filtered, the filtrate was concentrated and the residual oil was partitioned between dichloromethane and $H₂O$. The dichloromethane layer was dried over magnesium sulfate and evaporated to afford N-(2-furalmethyl) ethylenediamine (1.02 g, 70% yield) and then N-(2-furalmethyl)ethylenediamine reacted with 1,1-bis(methylthio)-2-nitroethylene to afford 1f in 70% yield. Compounds 1g, 1k–l, and 1r–s were similarly prepared.

4.4. General procedure for preparation of unsaturated oximes 2a–t

A solution of 1a (1.53 g, 6 mmol) in dichloromethane (100 ml) was treated with solid $SnCl₂·2H₂O$ (7.4 g, 33 mmol). The mixture was stirred at ambient temperature under nitrogen for 5 h and then poured cautiously into saturated aqueous NaHCO₃. The resulting gelatinous emulsion was filtered through a pad of diatomite, and the biphasic filtrate was extracted with dichloromathane five times. The combined organic extracts were dried over anhydrous magnesium sulfate and concentrated in vacuo, affording the oxime 2a (0.64 g, 45% yield) that was purified by silica gel chromatography $(CH_2Cl_2/CH_3OH=4:1, v/v).$

4.4.1. 1-(6-Chloro-pyridin-3-ylmethyl)-4,5-dihydro-1H-imidazole-2 carbaldehyde oxime $(2a)$. Yield 45%; white powders; mp 142.5-143.8 °C; IR (KBr, cm⁻¹): 3434, 1632, 1566, 1296, 929; ¹H NMR $(400$ MHz, DMSO- d_6) δ (ppm) 11.54 (br, 1H), 7.73 (s, 1H), 7.60 (s, 1H), 4.84 (s, 2H), 3.67 (t, 2H, J=9.6 Hz), 3.33 (t, 2H, J=9.6 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 158.3, 149.0, 148.9, 142.1, 138.9, 124.1, 52.7, 50.6, 47.6; HRMS (ESI) calculated for $C_{10}H_{12}N_4$ OCl [M+H⁺] 239.0700, found 239.0692.

4.4.2. 1-(2-Chloro-thiazol-5-ylmethyl)-4,5-dihydro-1H-imidazole-2 carbaldehyde oxime (2b). Yield 43%; white powders; mp 138.5-139.7 °C; IR (KBr, cm⁻¹): 3435, 1632, 1563, 1281, 922; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.76 (br, 1H), 8.33 (d, 1H, J=2.0 Hz), 7.77 (s, 1H), 7.75 (d, 1H, J=2.0 Hz), 7.51 (d, 1H, J=8.0 Hz), 4.71 (s, 2H), 3.70 (t, 2H, J=10.0 Hz), 3.31 (t, 2H, J=10.0 Hz); ¹³C NMR (100 MHz DMSO-d6) d (ppm) 157.7, 150.0, 142.2, 140.0, 138.4, 52.7, 50.1, 43.3; HRMS (ESI) calculated for $C_8H_{10}N_4$ OSCl [M+H⁺] 245.0264, found 245.0260.

4.4.3. 1-Pyridin-2-ylmethyl-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime (2c). Yield 40%; gray powders; mp 125.6–127.1 °C; IR (KBr, cm⁻¹): 3416, 1636, 1556, 1295, 930; ¹H NMR (400 MHz,

DMSO- d_6) δ (ppm) 11.68 (br, 1H), 8.51 (d, 1H, J=4.4 Hz), 7.78 (t, 1H, J=8.0 Hz), 7.72 (s, 1H), 7.28 (t, 2H, J=7.2 Hz), 4.80 (s, 2H), 3.71 (t, 2H, J=10.0 Hz), 3.35 (t, 2H, J=10.0 Hz); ¹³C NMR (100 MHz, DMSO-d₆) d (ppm) 158.8, 157.9, 149.1, 142.1, 136.7, 122.1, 121.3, 52.6, 52.0, 50.7; HRMS (ESI) calculated for $C_{10}H_{13}N_4O$ [M+H⁺] 205.1089, found 205.1080.

4.4.4. 1-Pyridin-3-ylmethyl-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime (2d). Yield 40%; gray powders; mp $144.4-145.6$ °C; IR (KBr, cm⁻¹): 3430, 1637, 1556, 1276, 925; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.74 (br, 1H), 8.49 (s, 2H), 7.73 (s, 1H), 7.67 (d, 1H, J=7.6 Hz), 7.38 (t, 1H, J=7.6 Hz), 4.71 (s, 2H), 3.68 (t, 2H, $J=6.0$ Hz), 3.26 (t, 2H, $J=6.0$ Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm) 158.5, 148.8, 148.3, 142.1, 135.1, 133.8, 123.5, 52.6, 50.5, 48.3; HRMS (ESI) calculated for $C_{10}H_{13}N_4O$ [M+H⁺] 205.1089, found 205.1084.

4.4.5. 1-Benzyl-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime (**2e**). Yield 62%; gray powders; mp 141.8–143.6 °C; IR (KBr, cm $^{-1}$): 3435, 1633, 1555, 1281, 928; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.85 (br, 1H), 7.74 (s, 1H), 7.34 (t, 2H, $J=8.0$ Hz), 7.26 (t, 3H, $J=8.0$ Hz), 4.70 (s, 2H), 3.67 (t, 2H, $J=10.0$ Hz), 3.24 (t, 2H, J=10.0 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 158.6, 141.9, 138.1, 128.4, 127.3, 127.0, 52.3, 50.4, 50.3; HRMS (ESI) calculated for $C_{11}H_{14}N_3O$ [M+H⁺] 204.1137, found 204.1147.

4.4.6. 1-Furan-2-ylmethyl-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime (2f). Yield 58%; white powders; mp 132.5–133.3 °C; IR (KBr, cm⁻¹): 3420, 1636, 1582, 1291, 958; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.90 (br, 1H), 7.70 (s, 1H), 7.59 (s, 1H), 6.40 (d, 1H), 6.26 (s, 1H), 4.68 (s, 2H), 3.64 (t, 2H, J=5.6 Hz), 3.28 (t, 2H, $J=5.6$ Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm) 158.5, 147.8, 143.8, 135.1, 110.7, 110.0, 49.7, 43.1, 42.4; HRMS (ESI) calculated for $C_9H_{12}N_3O_2$ [M+H⁺] 194.0930, found 194.0935.

4.4.7. 1-Thiophen-2-ylmethyl-4,5-dihydro-1H-imidazole-2-carbaldehyde oxime $(2g)$. Yield 60%; white powders; mp 136.2–137.7 °C; IR (KBr, cm⁻¹): 3427, 1630, 1598, 1290, 927; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.88 (br, 1H), 7.75 (s, 1H), 7.44 (dd, 1H, J=4.0, 2.0 Hz), 7.00 (t, 2H, J=4.0 Hz), 4.88 (s, 2H), 3.65 (t, 2H, J=6.0 Hz), 3.26 (t, 2H, J=6.0 Hz); 13 C NMR (100 MHz, DMSO-d₆) d (ppm) 158.3, 142.1, 140.5, 126.7, 126.3, 125.5, 52.6, 49.9, 45.3; HRMS (ESI) calculated for $C_9H_{12}N_3O$ [M+H⁺] 210.0701, found 210.0691.

4.4.8. 1-(6-Chloro-pyridin-3-ylmethyl)-1,4,5,6-tetrahydro-pyrimidine-2-carbaldehyde oxime (2h). Yield 48%; white powders; mp 153.1–154.3 °C; IR (KBr, cm⁻¹): 3447, 1630, 1586, 1299, 937; ¹H NMR $(400 \text{ MHz}, \text{DMSO}-d_6) \delta \text{ (ppm)} 11.46 \text{ (br, 1H)}, 7.60 \text{ (s, 1H)}, 7.39 \text{ (s, 1H)},$ 4.73 (s, 2H), 3.31–3.15 (m, 4H), 1.68 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 158.3, 149.0, 148.8, 138.7, 133.6, 124.1, 50.9, 46.0, 43.5, 20.8; HRMS (ESI) calculated for $C_{11}H_{14}N_{4}OCl$ [M+H⁺] 253.0856, found 253.0846.

4.4.9. 1-(2-Chloro-thiazol-5-ylmethyl)-1,4,5,6-tetrahydro-pyrimidine-2-carbaldehyde oxime (2i). Yield 40%; white powders; mp 138.5–139.4 °C; IR (KBr, cm⁻¹): 3430, 1617, 1564, 1320, 939; ¹H NMR $(400 \text{ MHz}, \text{DMSO-}d_6) \delta \text{ (ppm)}$ 11.26 (br, 1H), 8.30 (s, 1H), 7.73 (d, 1H, J=8.0 Hz), 7.51 (d, 1H, J=8.0 Hz), 7.44 (s, 1H), 4.66 (s, 2H), 3.32 (t, 2H, J=5.6 Hz), 3.12 (t, 2H, J=5.6 Hz), 1.72 (t, 2H, J=5.6 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 150.5, 150.1, 146.8, 140.1, 139.1, 47.2, 45.5, 44.0, 20.9; HRMS (ESI) calculated for $C_9H_{12}N_4OSCI$ [M+H⁺] 259.0420, found 259.0415.

4.4.10. 1-Benzyl-1,4,5,6-tetrahydro-pyrimidine-2-carbaldehyde oxime $(2j)$. Yield 65%; white powders; mp 125.8–127.1 °C; IR (KBr,

cm $^{-1}$): 3390, 1650, 1568, 1321, 933; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) d (ppm) 11.58 (br, 1H), 8.33 (s, 1H), 741–7.29 (m, 5H), 4.87 (s, 2H), 3.49–3.35 (m, 4H), 1.69 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) d (ppm) 151.9, 144.4, 138.0, 128.5, 127.0, 126.8, 53.8, 46.0, 42.8, 20.7; HRMS (ESI) calculated for $C_{12}H_{16}N_3O$ [M+H⁺] 218.1293, found 218.1287.

4.4.11. 1-Furan-2-ylmethyl-1,4,5,6-tetrahydro-pyrimidine-2-carbaldehyde oxime (2k). Yield 61%; white powders; mp 151.8–153.4 °C; IR (KBr, cm $^{-1}$): 3433, 1649, 1571, 1297, 928; $^1\mathrm{H}$ NMR (400 MHz, DMSO- d_6) δ (ppm) 11.12 (br, 1H), 8.43 (s, 1H), 7.70 (s, 1H), 6.52 (d, 1H, $J=3.2$ Hz), 6.45 (d, 1H, $J=3.2$ Hz), 4.89 (s, 2H), 3.53 (t, 2H, J=5.6 Hz), 3.34 (t, 2H, J=5.6 Hz), 1.91 (t, 2H, J=5.6 Hz); ¹³C NMR (100 MHz DMSO- d_6) δ (ppm) 153.9, 148.5, 144.4, 138.9, 111.2, 110.4, 48.1, 47.0, 38.3, 18.7; HRMS (ESI) calculated for $C_{10}H_{14}N_3O_2$ [M+H⁺] 208.1086, found 208.1093.

4.4.12. 1-Thiophen-2-ylmethyl-1,4,5,6-tetrahydro-pyrimidine-2-carbaldehyde oxime (21). Yield 64%; white powders; mp 154.2-156.0 °C; IR (KBr, cm⁻¹): 3426, 1646, 1566, 1315, 932; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 10.48 (br, 1H), 8.42 (s, 1H), 7.58 (s, 1H), 7.17 (s, 1H), 7.05 (s, 1H), 5.06 (s, 2H), 3.53–3.36 (m, 4H), 1.93 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 159.3, 156.2, 136.1, 129.5, 128.1, 127.7, 50.4, 44.3, 38.0, 18.3; HRMS (ESI) calculated for $C_{10}H_{14}N_3OS$ [M+H⁺] 224.0858, found 224.0853.

4.4.13. 1-(6-Chloro-pyridin-3-ylmethyl)-4,5,6,7,8,9-hexahydro-1Hbenzoimidazole-2-carbaldehyde oxime $(2m)$. Yield 68%; white powders; mp 162.0–162.9 °C; IR (KBr, cm $^{-1}$): 3435, 1631, 1569, 1300, 920; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 12.04 (br, 1H), 7.70 (s, 1H), 7.60 (s, 1H), 4.89 (d, 1H, $J=16.0$ Hz), 4.74 (d, 1H, $J=16.0$ Hz), 2.89 (t, 1H, $J=6.4$ Hz), 2.56 (t, 1H, $J=6.4$ Hz), 2.13 (m, 2H), 1.71 (m, 2H), 1.28–1.21 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) d (ppm) 158.0, 148.9, 148.8, 142.7, 138.8, 134.0, 124.0, 61.9, 60.7, 44.7, 28.3, 23.3, 20.8, 19.7; HRMS (ESI) calculated for $C_{14}H_{18}N_4$ OCl $[M+H^+]$ 293.1169, found 293.1183.

4.4.14. 1-(2-Chloro-thiazol-5-ylmethyl)-4,5,6,7,8,9-hexahydro-1Hbenzoimidazole-2-carbaldehyde oxime $(2n)$. Yield 65%; white powders; mp 163.8–164.4 °C; IR (KBr, cm $^{-1}$): 3434, 1631, 1560, 1292, 922; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.84 (br, 1H), 8.33 (s, 1H), 7.75 (dd, 1H, J=8.0, 2.0 Hz), 7.70 (s, 1H), 7.50 (d, 1H, J=8.0 Hz), 4.81 (d, 1H, J=16.4 Hz), 4.60 (d, 1H, J=16.4 Hz), 3.75 (t, 1H, J=6.4 Hz), 3.35 (t, 1H, J=6.4 Hz), 1.72–1.41 (m, 4H), 1.71 (m, 2H), 1.21–1.16 (m, 4H); ¹³C NMR (100 MHz DMSO- d_6) δ (ppm) 159.7, 150.6, 143.3, 140.9, 138.3, 70.8, 69.6, 42.5, 30.7, 28.7, 25.4, 24.2; HRMS (ESI) calculated for $C_{12}H_{16}N_4$ OSCl [M+H⁺] 299.0733, found 299.0742.

4.4.15. 1-Pyridin-2-ylmethyl-4,5,6,7,8,9-hexahydro-1H-benzoimidazole-2-carbaldehyde oxime (2o). Yield 60%; white powders; mp 149.3–150.2 °C; IR (KBr, cm⁻¹): 3427, 1673, 1570, 1302, 928; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.69 (br, 1H), 8.48 (d, 1H, J=4.0 Hz), 7.76 (t, 1H, J=7.6 Hz), 7.71 (s, 1H), 7.35 (t, 1H, J=7.6 Hz), 7.25 (d, 1H, J=5.6 Hz), 4.82 (d, 1H, J=16.4 Hz), 4.71 (d, 1H, $J=16.4$ Hz), 2.94 (t, 1H, $J=14.0$ Hz), 2.65 (t, 1H, $J=6.4$ Hz), 2.14–1.63 (m, 4H), 1.31–1.20 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 161.0, 157.6, 149.6, 142.9, 137.3, 122.9, 121.8, 70.7, 70.2, 51.2, 29.8, 28.1, 24.3, 23.4; HRMS (ESI) calculated for $C_{14}H_{19}N_4O$ [M+H⁺] 259.1559, found 259.1558.

4.4.16. 1-Pyridin-3-ylmethyl-4,5,6,7,8,9-hexahydro-1H-benzoimidazole-2-carbaldehyde oxime $(2p)$. Yield 58%; white powders; mp 143.3–143.9 °C; IR (KBr, cm⁻¹): 3423, 1674, 1575, 1301, 931; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.76 (br, 1H), 8.51 (s, 1H), 8.46 (d, 1H, J=4.0 Hz), 7.74 (s, 1H), 7.68 (d, 1H, J=7.6 Hz), 7.37 (t, 1H, $J=7.6$ Hz), 4.91 (d, 1H, $J=16.0$ Hz), 4.51 (d, 1H, $J=16.0$ Hz), 2.94 (t, 1H, $J=12.0$ Hz), 2.62 (t, 1H, $J=12.0$ Hz), 2.14–1.65 (m, 4H), 1.30– 1.22 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 160.1, 148.8, 148.2, 142.7, 135.2, 134.0, 123.4, 70.5, 70.3, 47.2, 30.4, 28.9, 24.9, 23.8; HRMS (ESI) calculated for $C_{14}H_{19}N_4O$ [M+H⁺] 259.1559, found 259.1548.

4.4.17. 1-Benzyl-4,5,6,7,8,9-hexahydro-1H-benzoimidazole-2-carbaldehyde oxime ($2q$). Yield 75%; white powders; mp 148.3-149.9 °C; IR (KBr, cm⁻¹): 3434, 1631, 1561, 1303, 922; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.41 (br, 1H), 7.73 (s, 1H), 7.31 (d, 2H, J=6.8 Hz), 7.24 (t, 3H, J=6.8 Hz), 4.77 (d, 1H, J=16.0 Hz), 4.63 (d, 1H, J=16.0 Hz), 2.93 (t, 1H, $J=11.2$ Hz), 2.57 (t, 1H, $J=11.2$ Hz), 2.15–1.85 (m, 2H), 1.70–1.63 (m, 2H), 1.30–1.22 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 160.2, 142.6, 138.1, 128.2, 127.4, 126.9, 70.4, 69.7, 49.3, 30.4, 28.8, 24.9, 23.8; HRMS (ESI) calculated for $C_{15}H_{20}N_{3}O$ [M+H⁺] 258.1606, found 258.1597.

4.4.18. 1-Furan-2-ylmethyl-4,5,6,7,8,9-hexahydro-1H-benzoimidazole-2-carbaldehyde oxime $(2r)$. Yield 72%; white powders; mp 136.6–138.1 °C; IR (KBr, cm⁻¹): 3433, 1631, 1542, 1299, 928; ¹H NMR $(400$ MHz, DMSO- d_6) δ (ppm) 11.89 (br, 1H), 7.73 (s, 1H), 7.58 (s, 1H), 6.38 (t, 1H, J=3.2 Hz), 6.26 (d, 1H, J=3.2 Hz), 4.97 (d, 1H, J=16.4 Hz), 4.40 (d, 1H, J=16.4 Hz), 2.93-2.86 (m, 1H), 2.49-2.44 (m, 1H), 2.14 (d, 1H, J=8.8 Hz), 2.06 (d, 1H, J=8.8 Hz), 1.72 (d, 2H, J=12.0 Hz), 1.34–1.23 (m, 4H); ¹³C NMR (100 MHz DMSO- d_6) δ (ppm) 160.8, 151.5, 143.1, 142.7, 110.8, 108.9, 70.4, 69.3, 42.1, 30.8, 28.6, 25.4, 24.3; HRMS (ESI) calculated for $C_{13}H_{18}N_3O_2$ [M+H⁺] 248.1399, found 248.1392.

4.4.19. 1-Thiophen-2-ylmethyl-4,5,6,7,8,9-hexahydro-1H-benzoimidazole-2-carbaldehyde oxime (2s). Yield 72%; white powders; mp 146.4–147.1 °C; IR (KBr, cm⁻¹): 3434, 1632, 1565, 1300, 918; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.98 (br, 1H), 7.74 (s, 1H), 7.42 (dd, 1H, $I=4.0$, 2.4 Hz), 6.98 (t, 2H, $I=4.0$ Hz), 5.14 (d, 1H, $J=16.0$ Hz), 4.65 (d, 1H J = 16.0 Hz), 2.92 (t, 1H J = 14.4 Hz), 2.55 (t, 1H, $J=14.4$ Hz), 2.15–2.06 (m, 2H), 1.72 (d, 2H, $J=10.2$ Hz), 1.36– 1.22 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 160.3, 143.1, 139.9, 127.3, 127.2, 126.3, 70.5, 68.7, 44.0, 30.8, 28.7, 25.4, 24.3; HRMS (ESI) calculated for $C_{13}H_{18}N_3OS$ [M+H⁺] 264.1171, found 264.1179.

4.4.20. N-(6-Chloro-pyridin-3-ylmethyl)-N-ethyl-N'-methyl-acetamidine-2-carbaldehyde oxime $(2t)$. Yield 65%; white powders; mp $146.8 - 147.8 \text{ °C}$; IR (KBr, cm⁻¹): 3434, 1638, 1570, 1291, 916; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 11.63 (br, 1H), 8.30 (d, 1H, J=2.4 Hz), 7.90 (s, 1H), 7.72 (d, 1H, J=8.0 Hz) 7.45 (d, 2H, J=8.0 Hz), 4.49 (s, 2H), 3.20 (m, 2H), 2.93 (s, 3H), 0.98 (t, 3H, J=7.2 Hz); ¹³C NMR (100 MHz, DMSO-d6) d (ppm) 153.4, 148.9, 148.5, 142.4, 138.9, 134.6, 123.8, 46.1, 42.3, 36.4, 13.3; HRMS (ESI) calculated for $C_{11}H_{16}N_4$ OCl $[M+H^+]$ 255.1013, found 255.1008.

4.4.21. X-ray data. $C_{10}H_{11}Cl_1N_4O_1$ **2a**, unit cell parameters: $a=11.3228(17)$, $b=9.0996(14)$, $c=10.9721(17)$, $\alpha=90.00$, $\beta = 97.268(2)$, $\gamma = 90.00$, space group P21/c.

The crystallographic data for the structure 2a reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC 734794 for compounds 2a. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: þ44 1223 336033; email: deposit@ccdc.cam.ac.uk].

Acknowledgements

We are grateful to the National Natural Science Foundation of China (20536010, 90713030).

References and notes

- 1. Gawley, R. E.; Termine, E. J. J. Org. Chem. 1984, 49, 1946–1951.
- 2. Szwed, K. B.; Grochowski, J.; Obara, A.; Rys, B.; Serda, P. J. Org. Chem. 2001, 66, 7205–7208.
- 3. Owston, N. A.; Parker, A. J.; Williams, M. J. Org. Lett. 2007, 9, 3599–3601.
- 4. Kudyba, I.; Jozwik, J.; Romanski, J.; Raczkoa, J.; Jurczaka, J. Tetrahedron: Asymmetry 2005, 16, 2257–2262.
- 5. Grant, B. J.; Kramp, C. R.; Knight, J. D.; Meierhoefer, M. A.; Vella, J. H.; Sober, C. L.; Jones, S. S.; Metz, C. R.; Beam, C. F. J. Heterocycl. Chem. 2007, 44, 627–632.
- 6. Norman, A. L.; Shurrush, K. A.; Calleroz, A. T.; Mosher, M. D. Tetrahedron Lett. 2007, 48, 6849–6851.
- 7. Brown, M. A.; Gammon, D. W.; Casida, J. E. J. Agric. Food Chem. 1983, 31, 1091–1096.
- 8. Sun, R.; Lu, M.; Chen, L.; Li, Q.; Song, H.; Bi, F.; Huang, R.; Wang, Q. J. Agric. Food Chem. 2008, 56, 11376–11391.
- 9. Marek, L. J.; Koskinen, W. C.; Bresnahan, G. A. J. Agric. Food Chem. 2000, 48, 2797–2801.
- 10. Huang, J. X.; Jia, M. Y.; Liang, X. M.; Zhu, W. J.; Zhang, J. J.; Dong, Y. H.; Yuan, H. Z.; Qi, S. H.; Wu, J. P.; Chen, F. H.; Wang, D. Q. J. Agric. Food Chem. 2007, 55, 10857–10863.
- 11. Tu, S.; Xu, L. H.; Ye, L. Y.; Wang, X.; Sha, Y.; Xiao, Z. Y. J. Agric. Food Chem. 2008, 56, 5247–5253.
- 12. Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli, S.; Herreros, E.; Macchia, B. J. Med. Chem. 2002, 45, 4903–4912.
- 13. Gobbini, M.; Barassi, P.; Cerri, A.; Munari, S. D.; Fedrizzi, G.; Santagostino, M.; Schiavone, A.; Torri, M.; Melloni, P. J. Med. Chem. 2001, 44, 3821–3830.
- 14. Renaudet, O.; Reymond, J. L. Org. Lett. 2003, 5, 4693–4696.
- 15. Atria, A.; Michael, M. Pharmazie 1982, 37, 551–553.
- 16. Nakayama, A.; Iwamura, H.; Niwa, A.; Nakagawa, Y.; Fujita, T. J. Agric. Food Chem. 1985, 33, 1034–1041.
- 17. Kato, M.; Nishino, S.; Ohno, M.; Fukuyama, S.; Kita, Y.; Hirasawa, Y.; Nakanishi, Y.; Takasugi, H.; Sakane, K. Bioorg. Med. Chem. Lett. **1996**, 6, 33–38.
- 18. Hartmann, R. W.; Hector, M.; Haidar, S.; Ehmer, P. B.; Reichert, W.; Jose, J. J. Med. Chem. 2000, 43, 4266–4277.
- 19. Ley, J. P.; Bertram, H. J. Eur. J. Lipid. Sci. Technol. 2002, 104, 319–323.
-
- 20. Unterhalt, B.; Reinhold, H. J. *Arch. Pharm. (Weinhein, Ger.)* **1983,** 316, 68–73.
21. Domingo, L. R.; Picher, M. T.; Arroyo, P.; Sez, J. A. J. Org. Chem. **2006**, 71, 9319–9330.
- 22. Baran, J.; Mayr, H. J. Org. Chem. 1989, 54, 5012–5016.
- 23. D'Silva, T. D. J.; Durden, J. A.; Sousa, A. A.; Weiden, M. H. J. J. Agric. Food Chem. 1985, 33, 110–115.
- 24. Kurtz, A. P.; Durden, J. A.; Sousa, A. A.; Weiden, M. H. J. J. Agric. Food Chem. 1987, 35, 106–114.
- 25. Roch, F. M.; Tallec, A.; Tardivel, R. Electrochim. Acta 1995, 40, 1877–1880.
- 26. Knifton, J. F. J. Org. Chem. 1973, 38, 3297–3301.
- 27. Kruse, L. I.; Kaiser, C.; DeWolf, W. E.; Finkelstein, J. A.; Frazee, J. S.; Flaim, K. E.; Sawyer, J. L. J. Med. Chem. 1990, 33, 781–789.
- 28. Hisashi, N.; Yoshiaki, N.; David, T.; Atsushi, O.; Miki, A. Pest. Manag. Sci. 2000, 56, 875–881.
- 29. Cavero, M.; Motherwell, W. B.; Potier, P. Tetrahedron Lett. 2001, 42, 4377–4379. 30. Zuman, P.; Shah, B. Chem. Rev. 1994, 94, 1621–1641.
- 31. Glaser, R.; Murmann, R. K.; Barnes, C. L. J. Org. Chem. 1996, 61, 1047–1058.
- 32. Brady, E. D.; Clark, D. L.; Keogh, D. W.; Scott, B. L.; Watkin, J. G. J. Am. Chem. Soc. 2002, 124, 7007–7015.
- 33. Allegretti, P.; Cortizo, S.; Schiavoni, M.; Furlong, J. Mol. Med. Chem. 2007, 12, 5–8.
- 34. Long, J. A.; Harris, N. J.; Lammertsma, K. J. Org. Chem. 2001, 66, 6762–6767.
- 35. Koichi, M.; Katsuhiko, S.; Yumi, H.; Shinichi, T.; Kozo, S.; Shinzo, K. Biosci. Biotechnol. Biochem. 1993, 57, 127–128.

10382 K. Wang et al. / Tetrahedron 65 (2009) 10377–10382